Synthesis, reactions and theoretical studies of [1,2,4]triazolo[4,3-c] pyrimidinium- and [1,2,4]triazolo[4,3-a]pyrazinium-3-aminides

D erek L. C rabb, ${ }^{\text {a }}$ D avid A. M ain, ${ }^{\text {a J }}$ ohn O. M orley, ${ }^{\text {b }}$ Peter N. P reston ${ }^{\text {a }}$ and Stanley H. B. W right ${ }^{\text {c }}$
a D epartment of Chemistry, H eriot-W att U niversity, Riccarton, E dinburgh, UK EH 14 4A S
${ }^{\text {b }}$ C hemistry D epartment, U niversity of W ales, Swansea, UK SA 2 8P P
${ }^{\text {c M M erck, }}$ Sharp and D ohme R esearch L aboratories, H ertford R oad, H oddesdon, H ertfordshire, UK EN 11 9BU

Abstract

[1,2,4]T riazolo[4,3-c]pyrimidinium-3-aminides 5a-h have been synthesised by treating pyrimidin-6-yl thiosemicarbazide derivatives $7 \mathrm{f}-\mathrm{n}$ with dicyclohexylcarbodiimide (DCC). The above aminides $5 \mathrm{a}-\mathrm{h}$ were slowly hydrolysed in water but very rapidly hydrolysed in 5 м aqueous hydrochloric acid to give substituted 1,2,4-triazole derivatives (e.g. $5 \mathrm{a}, \mathrm{d}, \mathrm{g} \longrightarrow 8 \mathrm{e}, \mathrm{a}, \mathrm{f}$, respectively); related nucleophilic ring-opening reactions occurred when the aminides (cf. 5a-h) were treated with (separately) methanol and ethanol (e.g. 5d $\longrightarrow 8 \mathrm{c}$ and 8d, respectively). A series of analogous [1,2,4]triazolo[4,3-a]pyrazinium-3-aminides $6 \mathrm{a}-\mathrm{e}$ was prepared following the procedures described above. The pyrazinium aminides 6 are stable in aq. 2 m HCl , and a stable hydrochloride salt 13 was formed from one such substrate 6 a .

The structure and electronic properties of condensed triazolium betaines 1,5d, 6a and 15 have been studied using the semi-empirical PM 3/C O SM 0 method and with the ab initio 6-31 basis set; the implications of these results in respect of the potential of such betaines for molecular rearrangement are discussed.

Introduction

We have described the synthesis of 1,2,4-triazolo[1,5-a]-pyrimidinium-2-olates and -thiolates, ${ }^{1}$ and of analogous condensed betaines in the 1,2,4-triazolo[4,3-a]pyridine and -pyrimidine series. ${ }^{2}$ Of particular interest are 1,2,4-triazolo[4,3-a]pyrimidinium-3-aminides $\mathbf{1}$ certain examples of which ($\mathbf{1}$, $\mathrm{R}^{2}=$ electron-withdrawing group) are stable and isolable; in contrast, other (putative) compounds of this type in which R^{2} is not an electron-withdrawing group (e.g. $\mathrm{R}^{2}=\mathrm{Ph}$) undergo an unanticipated rearrangement leading to dimeric species unambiguously identified as 1,2,4-triazoles ($\mathbf{3}$ and 4, Scheme 1). ${ }^{2}$ We have tentatively suggested ${ }^{2}$ a mechanism (Scheme 1) in which the juxtaposition of an appropriately substituted aminide function and a methyl substituent adjacent to the bridgehead nitrogen permits generation of a reactive iminoallenic intermediate 2. This unusual behaviour encouraged us to attempt the synthesis of aminides in closely related ring systems in order to define the scope of this type of process. In this paper we describe the preparation and some reactions of aminides in the 1,2,4-triazolo[4,3-c]pyrimidine 5, and 1,2,4-triazolo[4,3a]pyrazine $\mathbf{6}$ systems; we also report results from theoretical studies of condensed triazolium betaines, including those described above, in an attempt to understand the factors governing rearrangement.

Results and discussion

1,2,4-T riazolo[4,3-c]pyrimidinium-3-aminides

All condensed triazolium betaines described herein were synthesised from substituted hydrazino pyrimidines and pyrazines. (2,6 -D imethylpyrimidin-4-yl) hydrazine 7a and the homologue $\mathbf{7 b}$ were prepared in conventional fashion ${ }^{3}$ from 4-chloro-2,6-dimethylpyrimidine ${ }^{4}$ and either hydrazine hydrate or N -methylhydrazine, respectively. The N -benzyl derivative 7 c was prepared by a standard procedure ${ }^{2}$ through alkylation of 6 -benzylidenehydrazino-2,4-dimethylpyrimidine 7d and acidic hydrolysis of the resulting N -benzyl derivative $\mathbf{7 e}$. The hydra-
zine derivatives were then treated with isothiocyanate derivatives to give a series of thiosemicarbazides (7f-n). With the exception of $\mathbf{7 m}$, the thiosemicarbazide derivatives ($\mathbf{7 f}-I$ and $\mathbf{7 n}$) were successfully cyclised into the desired 1,2,4-triazolo[4,3-c]pyrimidinium-3-aminides ($5 \mathrm{a}-\mathrm{h}, 36-59 \%$) by treating them with dicyclohexylcarbodiimide in acetone at room temperature. With one exception $\mathbf{5 b}$, the aminides were obtained analytically pure without recourse to recrystallisation or chromatography; indeed, such procedures caused slow hydrolysis of the betaines (see below), and the benzoyl derivative could not be purified to analytical standard. Spectroscopic data (${ }^{1} \mathrm{H}$ N M R , IR) were in accord with the proposed structures: assignments of chemical shifts for the 5 - (δ ca. 3.2) and 7-methyl (δ ca. 2.4) substituents were made by comparison with analogous 1,2,4-triazolo[4,3a]pyrimidinium betaines $1,{ }^{2}$ although there is an absence of coupling of $\mathrm{H}-8$ to the $\mathrm{C}-7$ methyl substituent in this case.

In contrast to our earlier observations on certain [1,2,4]triazolo[4,3-a]pyrimidinium-3-aminides, none of the aminides prepared in this study (5a-h) gave products of rearrangement; they were thermally stable at room temperature independent of whether the exocyclic N -substituent was electron-withdrawing (e.g. $\mathrm{CO}_{2} \mathrm{Et}$) or -donating (e.g. p$\mathrm{MeOC}_{6} \mathrm{H}_{4}$). However, all the aminides 5 a -h were prone to hydrolysis, particularly in aqueous acid. For example, when suspensions of the orange aminides $5 \mathrm{~d}, \mathrm{e}$ were stirred with water overnight, they gradually decolourised with formation of triazole derivatives ($\mathbf{8 a}, \mathbf{b}$, respectively) of undefined, but probably Z-stereochemistry; the reaction occurred immediately when the hydrolysis was conducted at room temperature with 5 m aqueous hydrochloric acid (see $\mathbf{5 a , d , g} \longrightarrow \mathbf{8 e}, \mathrm{a}, \mathrm{f}$, respectively). A similar type of pyrimidine ring-opening by nucleophilic attack at C-5 occurred on treatment of the aminide $5 \mathbf{d}$ with, separately, methanol and ethanol at room temperature (see $5 \mathrm{~d} \longrightarrow 8 \mathrm{c}$ and 8d, respectively). In this sense, the reactivity of these betaines resembles that of 'neutral' compounds in the series as exemplified by the Dimroth-type isomerisation, mediated through hydrolytic ring-opening, of 3-amino-7-methyl-5-propyl$[1,2,4]$ triazolo[4,3-c]pyrimidine (see e.g. $\mathbf{9} \longrightarrow \mathbf{1 0} \longrightarrow \mathbf{1 1}$,

e.g. $R^{1}=M$
e.g. $R^{2}=P h$
1

4

	R^{1}	R^{2}		R^{1}	R^{2}
a	Me	$\mathrm{CO}_{2} \mathrm{Et}$	a Me	Ph	
b	Me	COPh^{2}	b Me	$\mathrm{CO}_{2} \mathrm{Et}$	
c	Me	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	c	Me	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$
d	Me	Ph	d Me	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	
e	Me	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	e	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph
f	Me	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$			
g	Me	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$			
h	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CO}_{2} \mathrm{Et}$			

Scheme 1
Scheme 2). ${ }^{6}$ In the betaine series, recyclisation (cf. $\mathbf{1 0} \longrightarrow \mathbf{1 1}$) cannot occur and 5 -alkenyl-substituted 1,2,4-triazoles of potential value in synthesis are isolated (see e.g. useful preparative transformations of 2 -azadienes ${ }^{7}$ in the context of compounds $8 \mathrm{c}, \mathrm{d}$).

1,2,4-T riazolo[4,3-a]pyrazinium betaines
The synthetic route used to prepare aminides in this series 6 followed the procedures described above for condensed pyrimidine analogues (cf. 5a-h). Accordingly, hydrazinopyrazines 12b and 12c (prepared through the sequence $\mathbf{1 2 a}^{\mathbf{8}} \longrightarrow \mathbf{1 2 d} \longrightarrow \mathbf{1 2 e} \longrightarrow \mathbf{1 2 c}$) were converted through the appropriate thiosemicarbazide derivatives (12f-j) into 1,2,4-

R

e $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{N}=\mathrm{CHPh}$
f $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHCO}_{2} \mathrm{Et}$
g $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHCOPh}$
h $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHCOCH} \mathrm{H}_{2} \mathrm{Ph}$
i $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHPh}$
J $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$
k $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$
I $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$
m N(Me)NHCSNHMe
n $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NHCSNHCO} 2 \mathrm{Et}$
triazolo[4,3-a]pyrazinium 3 -aminides $\mathbf{6 a}$-e. The latter were yellow $\mathbf{6 b}$, red $\mathbf{6 a}, \mathbf{c}, \mathbf{e}$ or brown solids $\mathbf{6 d}$, easily isolated and purified to analytical standard without recourse to chromatography.
In contrast to the facile aqueous acidic hydrolysis of 1,2,4-triazolo[4,3-c]pyrimidinium-3-aminides $5 a-h$, the pyrazinium analogues 6 a-e proved to be stable under comparable conditions. For example, a solution of the aminide 6a in 2 m aq. hydrochloric acid changed from purple to yellow after 5 min at room temperature, and the free base could be quantitatively regenerated with aqueous alkali; a hydrochloride $\mathbf{1 3}$ could be isolated by passing gaseous hydrogen chloride through a chloroform solution of $\mathbf{6 a}$. The reactivity of the pyrazinium betaines (cf. 6) is thus parallelled by that of 'neutral' triazolo[4,3-a]pyrazines: for example, 3-methyl[1,2,4]triazolo-[4,3-a]pyrazine is stable in hot aqueous acid. ${ }^{9}$

Scheme 2

Theoretical studies

M ethods of calculation

M olecular structures were fully optimised using the PM 3^{10} method of the M OPAC package ${ }^{11}$ at the 'precise' level using the general numbering convention shown in Fig. 1. Solvent effects were introduced into the calculation using the COSM O method ${ }^{12}$ which is based on a continuum approach where the solute is embedded in a dielectric continuum of permittivity ε. In these studies, dichloromethane was selected as the solvent wih $\varepsilon=8.9{ }^{13}$ The transition state in passing from $\mathbf{1}$ to 1 A by an intramolecular hydrogen shift (Scheme 1) was approached from both sides of the reaction using a saddle calculation. This approximate transition state was refined and then characterised by its unique single imaginary frequency. A n ab initio reference calculation was carried out on $\mathbf{1}$ using the GAMESS program ${ }^{14}$ at the $6-31 \mathrm{G}$ level ${ }^{15}$ to compare with the semi-empirical results.

R

a	NHNH_{2}
b	$\mathrm{N}(\mathrm{Me}) \mathrm{NH}_{2}$
c	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NH}_{2}$
d	$\mathrm{NHN}=\mathrm{CHPh}$
e	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{N}=\mathrm{CHPh}$
f	N(Me)NHCSNHPh
g	$\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHCO}_{2} \mathrm{Et}$
h	$\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHC}_{6} \mathrm{H}_{4} \mathrm{O}-p-\mathrm{Me}$
i	$\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHC}_{6} \mathrm{H}_{4}-p-\mathrm{Me}$
j	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NHCSNHPh}$

15

15

14
$\begin{array}{ll}\text { h } & \mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHC}_{6} \mathrm{H}_{4} \mathrm{O}-p-\mathrm{Me} \\ \text { i } \\ \mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHC}_{6} \mathrm{H}_{4}-p-\mathrm{Me}\end{array}$
$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NHCSNHPh}$

15A

16

D iscussion

Structural aspects. The triazolium betaine structures selected for study were 1, 5d, 6a and the 1,2,4-triazolo[4,3a]pyridinium betaine $\mathbf{1 5}$ described in our earlier work. ${ }^{2}$

While therearea number of experimentally determined structures available in theC ambridge Structural D atabase ${ }^{16}$ which are related to the condensed triazoles discussed here, almost all are organic salts, with the notable exception of 1,4-diphenyl-1,2,4-triazolium-3-(N -phenyl)aminide or Nitron^{17} 14. In this structure, there are two molecules in the unit cell which show average bond lengths at the heterocyclic ring which vary from 1.41 at $\mathrm{N} 1-\mathrm{N} 2,1.36$ at N $2-\mathrm{C} 3,1.42$ at C3-N 4, 1.33 at N 1-C5, and $1.32 \AA$ at C3-NPh with average angles ranging from 104° at $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3,108^{\circ}$ at $\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 4,109^{\circ}$ at $\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$, and 113° at N 2-N 1-C5. A n ab initio reference calculation on the aminide 1 at the $6-31 \mathrm{G}$ level with full optimisation of all variables gives a structure which has bond lengths of 1.40 at N 1-N $2,1.34$ at $\mathrm{N} 2-\mathrm{C} 3,1.46$ at $\mathrm{C} 3-\mathrm{N} 4,1.30$ at $\mathrm{N} 1-\mathrm{C} 9$, and $1.29 \AA$ at C $3-\mathrm{N} 10$ with angles of 107° at $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3,107^{\circ}$ at $\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 4,107^{\circ}$ at $\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 9$, and 112° at $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 9$ (Fig. 2). Although the parametrisation of the nitrogen atom in the PM 3 method has been criticised, ${ }^{18}$ the bond lengths and particularly the angles calculated here appear to show a reasonable correlation with the expected values based on both the experimental data for N itron and the calculated 6-31G structure for 1. For example, the PM 3 structure for 1 shows cal culated bond lengths of 1.41 at N 1-N 2, 1.45 at C3-N 4, and 1.32 A at C3-N 10, with calculated angles of 108° at $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3,107^{\circ}$ at $\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 4,107^{\circ}$ at $\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 9$, and 111° at $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 9$.

While the PM 3 calculations predict planar conformations for the heterocyclic rings of $\mathbf{1 , 5 d} \mathbf{5} \mathbf{6 a}$ and $\mathbf{1 5}$, in line with the experimental data for the single heterocyclic ring in Nitron 14 and the ab initio results on $\mathbf{1}$, the phenyl group attached to the exocyclic nitrogen at the 3 -position is twisted from this plane by ca. 30° in each case compared with experimental torsion angles of 15° and 6° found for the two molecules in the unit cell of N itron. The reduced twist in the experimental structure may be a consequence of packing forces in the crystal since the ab initio structure for $\mathbf{1}$ al so shows a twist of 28°.

There are no comparable crystallographic data available for the three corresponding tautomeric species $\mathbf{1 A}, \mathbf{5 A}, \mathbf{6 A}$ and 15A. The heterocyclic rings of these structures are predicted to be essentially planar, but the ring nitrogen at the 1-position now adopts a tetrahedral sp^{3} conformation so that the attached

Fig. 1 Numbering convention for condensed triazolium betaines listed in Table 2
(a)

(b)

Fig. 2 Calculated geometry of the aminide 1 obtained at 6-31G level (a) bond lengths; (b) angles
methyl carbon in $\mathbf{1 A}$ is calculated to be 26° above the ring plane. A similar change in hybridisation occurs at the exocyclic amino nitrogen (at the 3-position), where both the attached hydrogen and phenyl carbon atoms are 33 and 19° below the ring plane, respectively. The $s p^{3}$ hybridisation at the amino nitrogen is not unexpected, because of the potential clash between the attached hydrogen and one hydrogen on the adjacent methylene carbon at the 5 -position of the heterocyclic ring in the alternative trigonal sp^{2} configuration. Similar results are found for 5A, 6A and 15A.
Electronic properties. The dipole moments of $\mathbf{1 , 5 d}, \mathbf{6 a}$ and 15 calculated in dichloromethane are substantial, with values of $8.61,8.49,7.26$ and 10.4 D respectively (Table 1). However, although these values are large, they compare favourably with the ab initio result obtained for 1 of 8.86 D and with the experimental value of 7.2 D found for N itron 14 in benzene, ${ }^{19}$ and reflect the large contribution of the charged resonance form to the overall structure. A s might be anticipated, the calculated dipole moments of the tautomers $\mathbf{1 A}, 5 \mathrm{~A}, \mathbf{6 A}$ and $\mathbf{1 5 A}$ are considerably less than those of the respective betaines (see Table 1), with the largest change in passing from 15 to 15 A (8.70 D) and the lowest (2.53 D) from $\mathbf{6 a}$ to $\mathbf{6 A}$.

It is of interest from a theoretical viewpoint to establish the relative importance of canonical forms describing the overall structures of the condensed betaines (e.g. 1), and the relative thermodynamic stabilities of their tautomers (e.g. 1A). It may

Table 1 Calculated dipole moments and heats of formation for condensed triazolium betaines $\mathbf{1 , 5 d}, \mathbf{6 a}$ and $\mathbf{1 5}$ and putative tautomers $\mathbf{1 A}, \mathbf{5 A}, \mathbf{6 A}$ and 15A

Structure	μ	$\Delta \mathrm{H}_{\mathbf{f}}$	Tautomer	μ	$\Delta \mathrm{H}_{\mathbf{f}}$	$\Delta \mu$	$\Delta \mathrm{E}$
$\mathbf{1}$	8.61	93.4	$\mathbf{1 A}$	3.69	96.5	4.91	3.19
5d	8.49	92.3	$\mathbf{5 A}$	2.78	98.5	5.71	6.17
$\mathbf{6 a}$	7.26	96.5	$\mathbf{6 A}$	4.73	100.5	2.53	4.00
$\mathbf{1 5}$	10.5	87.0	$\mathbf{1 5 A}$	1.69	93.9	8.70	6.89

${ }^{\text {a }} \mu$ is the dipole moment (D); $\Delta \mathrm{H}_{\mathrm{f}}$ is the heat of formation ($\mathrm{kcal} \mathrm{mol}^{-1}$), and $\Delta \mu$ and $\Delta \mathrm{E}$ are the differences in dipole moments and energy (in the same units), respectively, between the tautomers.

Table 2 Calculated atomic charges in condensed triazolium betaines 1, 5d, 6a and $\mathbf{1 5}$ and related tautomers 1A, 5A, 6A and 15A

A tom	1	1A	5d	5A	6a	6A	15	15A
N 1	0.436	0.140	0.444	0.121	0.492	0.082	0.384	0.076
N 2	-0.560	-0.353	-0.564	-0.370	-0.538	-0.371	-0.554	-0.364
C3	0.082	-0.020	0.084	-0.016	0.065	-0.014	0.070	-0.013
N 4	0.303	0.231	0.269	0.223	0.360	0.229	0.345	0.241
C5	0.045	-0.020	0.065	-0.014	-0.077	-0.014	-0.037	-0.018
$\times 6$	-0.286	-0.267	-0.237	-0.272	-0.172	-0.039	-0.207	0.214
$\times 7$	0.135	0.039	0.067	0.129	-0.089	-0.106	0.039	0.006
X 8	-0.199	-0.305	-0.207	-0.349	0.016	-0.147	-0.177	-0.241
C9	-0.167	-0.027	-0.162	-0.046	-0.265	-0.156	-0.168	-0.111
N 10	-0.308	0.148	-0.295	0.151	-0.313	0.138	-0.320	0.144
C11	-0.121	-0.284	-0.095	-0.294	-0.101	-0.216	-0.088	-0.319

A

C

B

D
$\mathrm{X}=\mathrm{CH}$ or N

Fig. 3 Significant canonical structures for condensed triazolium betaines 1, 5d, 6a and 15
be noted that the acidity of the 5 - relative to the $7-\mathrm{CH}_{3}$ group (cf. 1) is anticipated on the basis of H/D exchange at this site in the ${ }^{1} \mathrm{H}$ NMR spectra of analogous condensed triazolium betaines (e.g. 16). ${ }^{20}$ It is notable that the calculated atomic charge at the $6-31 \mathrm{G}$ level of $\mathrm{H}-12$ in $\mathbf{1}$ is +0.30 compared to values of +0.20 for the hydrogens attached to other methyl groups. However, this acidic hydrogen is well removed from the adjacent nitrogen, N-10, by $2.25 \AA$ (Fig. 1).

A detailed analysis of the atomic charges of the nitrogens at the five-membered ring of the triazolium betaines at the PM 3 level suggests that there are four major canonical forms which contribute to the large dipole moment (see Table 2 and Fig. 3). Two of these, \mathbf{A} and \mathbf{B}, have a positive charge located at N 4 which is counteracted by a negative charge at either N 10 (A) or N2 (B), while the others, C and D, have a positive charge at N 1 with the negative charge again at either N 10 (C) or N 2 (D). The large negative charge at N 2 in each case, which ranges from -0.54 to -0.56 over the series compared with -0.30 to -0.32 for N 10 , strongly suggests that B and D make a dominant contribution to the overall structure. F urthermore, an analysis of the charges at $N 1$ and $N 4$, shows that the positive charge at the former is considerably greater than that of the latter for $\mathbf{1 , 5 d}$ and $\mathbf{6 a}$, suggesting that canonical form \mathbf{D} is preferred in these cases, though there is little difference between \mathbf{B} and \mathbf{D} in the case of 15 .

These conclusions are supported by the PM 3 structural data, which in all cases, show double bond character at C3-N 10 and N 1-C 9 with bond lengths of ca. 1.32 and $1.35 \AA$, and single bond character at N $1-\mathrm{N} 2, \mathrm{~N} 2-\mathrm{C} 3$ and $\mathrm{N} 4-\mathrm{C} 9$ with values of ca. $1.41,1.39$ and $1.41 \AA$, respectively. The ab initio reference calculation at the $6-31 \mathrm{G}$ level is highly supportive with the nominal double bonds at C3-N 10 and N 1-C9 even shorter at 1.29 and $1.30 \AA$, respectively (Fig. 2). There seems little doubt, therefore, that canonical structures \mathbf{D} make an important overall contribution to the resonance hybrid. It is interesting to comparethis view with our earlier conclusion on the molecular structure of 1 -benzyl-5,7-dimethyl-1H-[1,2,4]triazolo[4,3-a]-pyrimidinium-3-olate ($\mathbf{1}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{O}^{-}$for ${ }^{-} \mathrm{NR}^{2}$) from X -ray crystallographic analysis: ${ }^{5}$ namely, that a canonical form isostructural with C makes a significant contribution to the overall structure.
Since the charges on the exocyclic aminide nitrogens in the series ($\mathbf{1}, \mathbf{5 d}, 6 \mathrm{a}$ and $\mathbf{1 5}$) are comparable ($\mathrm{N}-10$, Table 2) it was decided to calculate the relative thermodynamic stability of these betaines compared with their respective tautomers ($\mathbf{1 A}$, 5A, 6A and 15A). A surprising outcome (Table 1) is that the latter areonly marginally less stablethan the former (3.2-6.9 cal $\mathrm{mol}^{-1}, 1 \mathrm{cal}=4.184 \mathrm{~J}$, see Table 1).

With evidence for the thermodynamic feasibility of the initial step of the proposed rearrangement (Scheme 1) to hand, it was decided to calculate its kinetic basis assuming an intramolecular prototropic shift. The result indicated that the process is energetically demanding: the transition state for the hydrogen transfer is product-like, with $\mathrm{CH}_{2}-\mathrm{H}$ and $\mathrm{H}-\mathrm{N}$ distances of 1.56 and $1.25 \AA$ respectively, with a barrier height of $31.5 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to 1 . The high activation energy arises, in part, from the strain induced by the transfer process which reduces the angles at $\mathrm{N} 4-\mathrm{C}_{5}-\mathrm{CH}_{3}$ and at $\mathrm{N} 4-\mathrm{C} 3-\mathrm{NPh}$ from 122.6° and 121.3° in $\mathbf{1}$ to 115.7° and 117.8°, respectively, in the transition state.

C onclusions

The target [1,2,4]triazolo[4,3-c]pyrimidinium-3-aminides ($5 \mathbf{a}$ - \mathbf{h}) and [$1,2,4]$ triazolo[4,3-a]pyrazinium-3-aminides ($6 \mathbf{a}-\mathbf{e}$) are readily synthesised by conventional methods. U nlike analogous [$1,2,4$]triazolo[4,3-a]pyrimidinium-3-aminides 1, the [$4,3-\mathrm{c}]$ isomers 5 and the pyrazine derivatives $\mathbf{6}$ are stable and isolable, independent of whether the exocyclic N-substituent
is electron-withdrawing or otherwise; the formation of dimerisation products was not observed. The [1,2,4]triazolo[4,3 -c]pyrimidinium betaines 5 are, however, susceptible to nucleophilic attack at the 5 -position leading to opening of the pyrimidinering.

The structure and electronic properties of a series of condensed triazolium betaines 1, 5d, 6a and 15 have been investigated theoretically using the PM 3/COSM 0 method. As would be anticipated, the betaines have relatively high predicted dipole moments which show a good correlation with experimental data for N itron 14 and with a reference gas phase calculation at the ab initio 6-31G level on the structure 1. An unanticipated feature arises from estimated values of thermodynamic stabilities of the betaines described above, relative to their tautomeric counterparts $\mathbf{1 A}, \mathbf{5 A}, \mathbf{6 A}$ and $\mathbf{1 5 A}$; these results suggest that their interconversion is feasible from a thermodynamic viewpoint. H owever, such a transformation, for $\mathbf{1} \longrightarrow \mathbf{1 A}$ at least, is unlikely to occur by a concerted intramolecular mechanism in view of the relatively high calculated barrier height of 31.5 kcal mol^{-1}.

The mechanism for formation of dimeric products ($\mathbf{3}$ and $\mathbf{4}$) from [1,2,4]triazolo[4,3-a]pyrimidinium-3-aminides remains unclear. The present theoretical study would suggest that the initial step $(\mathbf{1} \longrightarrow \mathbf{1 A})$ in the tentatively suggested route (Scheme 1) would proceed by a non-concerted process. In this context, it is relevant that the dimerisation of [1,2,4]triazolo[4,3-a]pyrimidinium salts related to the betaines 1 can be induced by means of an external base. ${ }^{2}$ By analogy, an intermolecular mechanism involving sequential protonation (of the aminide nitrogen)/deprotonation (of the C5-M egroup) can be envisaged as the initial step in the mechanism of dimerisation of the betaines $\mathbf{1}$. We are presently embarked on the synthesis of a wider range of condensed triazolium betaines including [1,2,4]triazolo[4,3-a]quinazolinium- and [1,2,4]triazolo[4,3a][1,3,5]triazinium aminides.

Experimental

Mp values were determined on a Gallenkamp apparatus and are uncorrected. IR spectra were recorded on Perkin-EImer 580 and 1600 instruments and calibrated against polystyrene ${ }^{1} \mathrm{H}$ NM R spectra were recorded on Bruker W P80 (80 M Hz), or Bruker W P200 (200.13 M Hz) spectrometers. ${ }^{13} \mathrm{C}$ N M R spectra were recorded on a Bruker W P200 (50.32 M Hz) spectrometer Chemical shifts are reported with respect to $\mathrm{SiM} \mathrm{e}_{4}$ as reference (positive shifts to high frequency/low field). U V-VIS spectra were recorded on a Shimadzu UV-240 spectrophotometer. Elemental analyses were performed at UMIST, M anchester, UK. Sorbsil C $6040 / 60 \mathrm{H}$ was used for column chromatography unless otherwise stated, and analytical TLC pre-coated plates were used. J values in Hz . TH F = tetrahydrofuran.

P reparation of (2,4-dimethylpyrimidin-6-yl)hydrazine 7a

2,4-D imethyl-6-chloropyrimidine ${ }^{3}(11.0 \mathrm{~g}, 77 \mathrm{mmol})$ and hydrazine monohydrate ($17.35 \mathrm{~g}, 347 \mathrm{mmol}$) in methylated spirit ($120 \mathrm{~cm}^{3}$) were stirred at room temp. for 1 h . The resulting white precipitate was separated and recrystallised from EtOA C to give the colourless title compound ($8.69 \mathrm{~g}, 82 \%$), mp 183$186^{\circ} \mathrm{C}$ (lit., ${ }^{4} 186-187^{\circ} \mathrm{C}$). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3298,3196$ and 1599 (NH). $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.20$ (s, $\left.3 \mathrm{H}, 4-\mathrm{M} \mathrm{e}\right), 2.30(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{M} \mathrm{e}$), 6.35 (s, 1 H, H-5). m/z (EI) 138 (100\%), 108 (20), 91 (31), 67 (61), 42 (63), 41 (23), 39 (38).

Preparation of 1-methyl-1-(2,4-dimethylpyrimidin-6-yl)hydrazine 7b

2,4-D imethyl-6-chloropyrimidine ($45.0 \mathrm{~g}, 316 \mathrm{mmol}$), potassium carbonate ($61.5 \mathrm{~g}, 445 \mathrm{mmol}$) and methylhydrazine (18.15 $\mathrm{g}, 394 \mathrm{mmol}$) were heated under reflux in methylated spirit (300 cm^{3}) for 1 h . The product was cooled and filtered and the filtrate
was evaporated to give the colourless title compound (38.5 g , 80%), mp $89-90^{\circ} \mathrm{C}$ (from hexane) (Found: C, 55.4; H, 8.2; N, 36.6%. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 55.2 ; \mathrm{H}, 8.0 ; \mathrm{N}, 36.8 \%\right) . v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3304(\mathrm{NH}) 3169(\mathrm{NH}), 1594(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 2.19$ (s, $3 \mathrm{H}, 4-\mathrm{M} \mathrm{e}$), 2.31 (s, $3 \mathrm{H}, 2-\mathrm{Me}$), 3.28 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{M} \mathrm{e}$), 4.45 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.75 (s, $1 \mathrm{H}, \mathrm{H}-5$). m/z (FAB) 153 (100\%) ($\mathrm{M}^{++}+1$), 152 (13).

Preparation of 6-benzylidenehydrazino-2,4-dimethylpyrimidine 7d

A solution of 2,4-dimethyl-6-hydrazinopyrimidine 7a (10.0 g, 72 mmol) in hot ethanol ($200 \mathrm{~cm}^{3}$) was treated with benzaldehyde ($11.5 \mathrm{~g}, 108 \mathrm{mmol}$) and the mixture was heated under reflux for 2 h . The solution was poured into water ($600 \mathrm{~cm}^{3}$) and the resultant precipitate was separated by filtration. This product was purified by washing with light petroleum (bp $60-80^{\circ} \mathrm{C}$) to give the title compound as an amorphous colourless solid ($12.8 \mathrm{~g}, 78 \%$), $\mathrm{mp} 161-164{ }^{\circ} \mathrm{C}$ (from light petroleum bp 60$80^{\circ} \mathrm{C}$) (Found: C, 69.0; H, 6.4; N, 24.5\%. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4}$ requires C, 69.0; H , 6.2; N, 24.8\%). $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3181,3051,1596,1446$, 1140; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.3$ (s, $3 \mathrm{H}, \mathrm{M} \mathrm{e}$), 2.4 (s, $3 \mathrm{H}, \mathrm{Me}$), 6.9 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$), $7.35-7.75(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 11.35(\mathrm{~s}, 1$ H, NH). m/z (EI) 227 (2\%) (M ${ }^{-+}$), 226 (10), 149 (13), 123 (100), 96 (12), 77 (10).

Preparation of N -benzyl-N-(2,4-dimethylpyrimidin-6-yl)benzaldehyde hydrazone 7 e

6-Benzylidenehydrazino-2,4-dimethylpyrimidine 8d (20.0 g , 88 mmol) in tetrahydrofuran ($250 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of sodium hydride ($2.11 \mathrm{~g}, 88 \mathrm{mmol}$) in tetrahydrofuran ($250 \mathrm{~cm}^{3}$) during which the temperature rose to ca. $30^{\circ} \mathrm{C}$. A fter 15 min , benzyl bromide ($15.05 \mathrm{~g}, 88 \mathrm{mmol}$) was added and the solution was heated under reflux for 5 h . A fter cooling to room temperature, the solvent was evaporated under reduced pressure, and the residual solid was partitioned between water and dichloromethane (total vol $200 \mathrm{~cm}^{3}$). Evaporation of the organic extract and recrystallisation of the residue from light petroleum ($b p 60-80^{\circ} \mathrm{C}$) gave the title compound ($20.0 \mathrm{~g}, 72 \%$), mp $129-131^{\circ} \mathrm{C}$ (Found: C, 75.7 ; H , 6.5; N, $17.6 \% . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 75.9 ; \mathrm{H}, 6.3 ; \mathrm{N}, 17.7 \%\right)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1584 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.5(\mathrm{~s}, 3 \mathrm{H}, \mathrm{M} \mathrm{e}), 2.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{M} \mathrm{e}$), $5.6(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{CH}_{2}$), 7.15-7.6 (m, $12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-5$ and $\mathrm{N}=\mathrm{CH}$). m/z (EI) $316(2 \%)\left(M^{\cdot+}\right), 212(51), 91(100), 77(55), 42(56)$.

Preparation of 1-benzyl-1-(2,4-dimethylpyrimidin-6-yl)hydrazine

 7cA solution of N -benzyl- N -(2,4-dimethylpyrimidin- 6 - yl)benzaldehyde hydrazone 7 e ($15.0 \mathrm{~g}, 47 \mathrm{mmol}$) in 5 m aqueous hydrochloric acid ($150 \mathrm{~cm}^{3}$) was heated under reflux for 8 h . Benzaldehyde was removed from the mixture by co-distillation with water. The solution was cooled to room temp., basified with 5 m aqueous sodium hydroxide and then extracted with dichloromethane ($2 \times 100 \mathrm{~cm}^{3}$). Evaporation of the organic extract gave the title compound as a yellow oil ($7.15 \mathrm{~g}, 66 \%$). No attempt was made to purify this compound to analytical standard and it was used for further transformations. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.3(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .2 .5(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, NH_{2}) $4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.7(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-$ H). m / z (EI) 228.13591 (50%), $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4}$ requires 228.13750 (M ${ }^{++}$), 137 (100\%), 108 (46\%), 107 (26\%), 91 (99%).

G eneral method for the preparation of 1-methyl-1(2,4-dimethyl-pyrimidin-6-yl)thiosemicarbazides 7f-m

A solution of 1-methyl-1-(2,4-dimethylpyrimidin-6-yl)hydrazine 8 b (1 mol) and the appropriate isothiocyanate derivative (1 mol) were stirred in diethyl ether at room temp. until the reaction was complete ($1-24 \mathrm{~h}$) [TLC examination]. The product precipitated to give, for example, colourless 1-methyl-1-(2,4dimethyl pyrimidin-6-yl)-4-ethoxycarbonylthiosemicarbazide 7 f (68\%), mp 193-194 ${ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 46.5; H, 6.4;
$\mathrm{N}, 24.8$; $\mathrm{S}, 11.6 \% \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ requires C, 46.3; $\mathrm{H}, 6.7 ; \mathrm{N}$ 24.5; S, 11.2\%). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3252(\mathrm{~N}-\mathrm{H}), 3166(\mathrm{~N}-\mathrm{H}), 1718$ ($\mathrm{C}=0$), $1586(\mathrm{~N}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.3$ (s, $3 \mathrm{H}, 4-\mathrm{Me}$), 2.5 ($\mathrm{s}, 3 \mathrm{H}, 2-\mathrm{Me}$), $3.4(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), 4.25 ($\mathrm{q}, 2$ $\left.\mathrm{H}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 10.3$ (br s, 1 H, NH). m/z (FAB) 284 (100%) ($M+1)^{+}, 250(26), 238$ (25), 137 (20).

The following colourless compounds were also prepared.
1-M ethyl-1-(2,4-dimethylpyrimidin-6-yl)-4-benzoylthiosemi-
carbazide ($\mathbf{7 g}, 80 \%$). Compound 7 g had $\mathrm{mp} 175-176^{\circ} \mathrm{C}$ (from toluene) (Found: C, 57.3; H , 5.4; N, 22.2; S, 9.9\%. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}$ requires C, 57.1; H, 5.4; N, 22.2; S, 10.2\%). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3188$ ($\mathrm{N}-\mathrm{H}$), $3147(\mathrm{~N}-\mathrm{H}), 1684(\mathrm{C}=\mathrm{O}), 1588(\mathrm{~N}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 2.25 (s, $3 \mathrm{H}, 4-\mathrm{Me}$ e) 2.45 (s, $3 \mathrm{H}, 2-\mathrm{M} \mathrm{e}$), 3.4 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{M} \mathrm{e}$), 6.4 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), $7.45-7.9$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). m/z (EI) 315 (0.29%) $\left(M^{+}\right), 283$ (15), 282 (100), 105 (84), 77 (35).

1-M ethyl-1-(2,4-dimethylpyrimidin-6-yl)-4-benzyloxycarbonylthiosemicarbazide ($7 \mathrm{~h}, \mathbf{7 0 \%}$). Compound 7 h had mp $171-173^{\circ} \mathrm{C}$ (from toluene) (Found: C, 55.7; H, 5.3; N, 20.5; S 9.7\%. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ requires: $\mathrm{C}, 56.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 20.4 ; \mathrm{S}, 9.3 \%$). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3188(\mathrm{~N}-\mathrm{H}), 3147(\mathrm{~N}-\mathrm{H}), 1684(\mathrm{C}=0), 1588(\mathrm{~N}-$ H); $\delta_{\mathrm{H}}\left(\mathrm{M} \mathrm{e}_{3} \mathrm{SO}\right) 2.2(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}$), $2.4(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{M} \mathrm{e}), 3.3(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{N}-\mathrm{Me}$), $5.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.3-7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-$ H), 11.45 (br s, $2 \mathrm{H}, \mathrm{NH}$).

1-M ethyl-1-(2,4-dimethylpyrimidin-6-yl)-4-phenylthiosemicarbazide (7i, 92\%). Compound 7i had mp 190-192 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 58.2 ; \mathrm{H}, 6.0 ; \mathrm{N}, 24.5 ; \mathrm{S}, 11.3 \% . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 58.5$; H, 5.9; N, 24.4; S, 11.2\%). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3138(\mathrm{~N}-\mathrm{H}), 1596$ ($\mathrm{N}-\mathrm{H}$). $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.4(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{M} \mathrm{e}), 2.6(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{Me}) 3.4(\mathrm{~s}, 3$ H, N-M e), 6.6 (s, 1 H, H-5), 7.2-7.5 (m, 5 H , Ar-H), 8.05 (br s, 1 H, NH), 8.35 (br s, 1 H NH). m/z (EI) 287 (0.2%) (${ }^{+}{ }^{+}$), 254 (100), 137 (22), 136 (48), 77 (29).

1-M ethyl-1-(2,4-dimethylpyrimidin-6-yl)-4-p-tolylthiosemicarbazide ($7 \mathrm{j}, 79 \%$). Compound 7 j had $\mathrm{mp} 185-186^{\circ} \mathrm{C}$ (Found: C, 59.6; H, 6.6; N, 23.4; S, 11.0\%. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 59.8$; $\mathrm{H}, 6.3 ; \mathrm{N}, 23.3 ; \mathrm{S}, 10.6 \% . v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3134$ and $1588(\mathrm{~N}-\mathrm{H})$. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.3$ (s, $3 \mathrm{H}, 4-\mathrm{M} \mathrm{e}$ or $\mathrm{Ar}-\mathrm{M} \mathrm{e}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{Me}$ or Ar-M e), 2.5 (s, $3 \mathrm{H}, 2-\mathrm{Me}$), 3.35 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), 6.6 (s, 1 H , $\mathrm{H}-5), 7.15$ and $7.35\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system of ArMe), 8.15 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.35 (br s, $1 \mathrm{H}, \mathrm{NH}$). m/z (EI) 301 (0.5%) (M^{+}), 268 (100), 137 (35), 136 (54), 108 (28), 91 (28), 67 (31).

1-M ethyl-1-(2,4-dimethylpyrimidin-6-yl)-4-p-nitrophenylthiosemicarbazide ($7 \mathrm{k}, \mathbf{9 2 \%}$). Compound 7 k had $\mathrm{mp} 194-195^{\circ} \mathrm{C}$ (decomp.) (Found: C, 50.6; H, 5.0; N, 25.0; S, 10.0\% $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$ requires: $\left.\mathrm{C}, 50.6 ; \mathrm{H}, 4.9 ; \mathrm{N}, 25.3 ; \mathrm{S}, 9.6 \%\right)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3153(\mathrm{~N}-\mathrm{H}), 1587(\mathrm{~N}-\mathrm{H}) . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.4(\mathrm{~s}, 3 \mathrm{H}$, 4-M e), 2.6 (s, 3H, 2-M e), 3.4 (s, 3H,N-M e), 6.55 (s, $1 \mathrm{H}, \mathrm{H}-5$), 7.9 and 8.2 (dd, $4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}$ system of ArNO_{2}). m/z (EI) 180 (100%) (M^{++}), 152 (56), 136 (61), 67 (57), 49 (56), 31 (67).

1-M ethyl-1-(2,4-dimethylpyrimidin-6-yl)-4-p-methox yphenylthiosemicarbazide ($7 \mathrm{II}, 81 \%$). Compound 7 II had $\mathrm{mp} 183-184^{\circ} \mathrm{C}$ $\delta_{\mathrm{H}}\left[\left(\mathrm{CO}_{3}\right)_{2} \mathrm{SO}\right] 2.2(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{M} \mathrm{e}), 2.4(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{Me}), 3.2(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{N}-\mathrm{M}$ e or $\mathrm{Ar}-\mathrm{OM}$ e), 3.7 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{M}$ e or Ar -OM e), 6.35 (s, 1 $\mathrm{H}, \mathrm{H}-5$), 6.85 and 7.3 (dd, $4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}$ system of $\mathrm{Ar}-\mathrm{OM} \mathrm{e}$); m / z (EI) 317.13103 (3\%). $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}$. requires: $317.13240,\left[\mathrm{M}^{+}\right]$ 284 (81), 165 (100), 150 (69), 136 (60), 122 (45), 91 (44).

1-M ethyl-1-(2,4-dimethylpyrimidin-6-yl)-4-methylthiosemicarbazide ($7 \mathrm{~m}, 94 \%$). Compound 7 m had $\mathrm{mp} 222-223^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 47.7 ; \mathrm{H}, 7.0 ; \mathrm{N}, 31.2 ; \mathrm{S}, 14.5 \% \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}{ }_{5} \mathrm{~S}$ requires: C, 48.0; H, 6.7; N, 31.1; S, 14.2\%). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3164$ and $1592(\mathrm{NH}) . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.35(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{M} \mathrm{e}), 2.5(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{M} \mathrm{e})$, 3.1 (d, $3 \mathrm{H}, \mathrm{J} 5,4-\mathrm{NM}$ e), 3.3 (s, $3 \mathrm{H}, 1-\mathrm{N}$ M e), 6.45 (s, $1 \mathrm{H}, \mathrm{H}-5$), 6.7 (br s, 1 H, NH), 7.7 (br s, 1 H, NH). m/z (EI) 225 (0.2%) (M ${ }^{+}$), 192 (100), 137 (14), 136 (30), 108 (14), 67 (14).

1-B enzyl-1-(2,4-dimethylpyrimidin-6-yl)-4-ethoxycarbonylthiosemicarbazide ($7 \mathrm{n}, \mathbf{7 4 \%}$). Compound $\mathbf{7 n}$ had $\mathrm{mp} 170-171^{\circ} \mathrm{C}$ (Found: C, 56.6; H, 6.1; N, 19.8; S, 9.2\%. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ requires C, 56.8; H, 5.8; N, 19.5; S, 9.2\%). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3414(\mathrm{~N}-\mathrm{H})$, 3214 ($\mathrm{N}-\mathrm{H}$), 3005, 1721 (C=O), 1590 (N-H), 1552, 1191, 1044; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{M} \mathrm{e}), 2.6$
(s, $3 \mathrm{H}, 2-\mathrm{Me}$), $4.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.2(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), $6.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.3(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.5(\mathrm{brs}, 1 \mathrm{H}$, NH), 10.9 (br s, 1 H, NH). m/z (EI) 360 (1%) (M^{+}), 212 (44), 91 (91).

G eneral method for the preparation of $[1,2,4]$ triazolo [4,3-c]-pyrimidinium-3-aminides 5a-h

The appropriate thiosemicarbazide derivative (1 equiv.) was stirred with dicyclohexylcarbodiimide (1.5 equiv.) in acetone for 3-7 d. The precipitate was separated by filtration and was either washed with chilled acetone or dissolved in dichloromethane and reprecipitated with light petroleum (bp $40-60^{\circ} \mathrm{C}$). The following compounds were prepared.

1,5,7-T rimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3-ethoxycarbonylaminide $\mathbf{5 a}$. Compound $\mathbf{5 a}$ was a pale-yellow amorphous solid (57\%), mp $140^{\circ} \mathrm{C}$ (decomp.) (Found: C, 52.9; H, 6.3; $\mathrm{N}, 27.0 \% . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 52.9 ; \mathrm{H}, 6.0 ; \mathrm{N}, 28.0 \%$). $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3051,2974,1644(\mathrm{C}=0), 1600,1518 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.3 (t, $3 \mathrm{H}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.5 (s, 3H, 7-M e), 3.25 (s, 3H,5-M e), $3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 4.1\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.9(\mathrm{~s}, 1 \mathrm{H}$, H-8). m/z (FAB), 250 (81%) ($\mathrm{M}+1)^{+}, 204$ (100), 177 (14).

1,5,7-T rimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3-benzoyl aminide $\mathbf{5 b}$. Compound $\mathbf{5 b}$ was a pale-yellow amorphous solid (36\%), mp 190-191 ${ }^{\circ} \mathrm{C}$ (decomp.). $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1652$ ($\mathrm{C}=0$), 1595, 1579, 1551, 1504. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.45$ (s, $3 \mathrm{H}, 7-\mathrm{M} \mathrm{e}$), 3.4 (s, 3 H, 5-M e), 3.95 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), 6.9 (s, $1 \mathrm{H}, \mathrm{H}-8$), $7.35-7.45$ (m, 3 H, Ar-H), 8.15-8.5 (m, 2 H , Ar-H). m/z (FAB) 282 (100%) (M + 1) ${ }^{+}$, 281 (21), 204 (20), 105 (43).

1,5,7-T rimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3-benzyl-

 oxycarbonylaminide 5c. Compound 5c was a pale-yellow amorphous solid (39\%). mp $161-163^{\circ} \mathrm{C}$ (decomp.) (Found: C, 61.4; H , 5.6; N, 22.2\%. C ${ }_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, 61.7; H,5.5; N, $22.5 \%) . v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1644(\mathrm{C}=0), 1594,1517,1271,1120$. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.45(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{M} \mathrm{e}$), $3.2(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{Me}$), $3.85(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{N}-\mathrm{Me}$ e), 5.15 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $6.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.15-7.5(\mathrm{~m}, 5 \mathrm{H}$, Ar-H). m/z (FAB) 312 (88%) ($\mathrm{M}+1)^{+}, 311$ (14), 205 (15), 204 (100), 177 (45).1,5,7-T rimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3-phenylaminide 5d. Compound 5d was an orange amorphous solid (56\%), mp 190-191 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 66.2; H, 5.8; N, 27.4\%. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5}$ requires: C, 66.4; $\left.\mathrm{H}, 5.9 ; \mathrm{N}, 27.7 \%\right)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1655,1620,1585,1520 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.4(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{M} \mathrm{e}), 3.35$ (s, $3 \mathrm{H}, 5-\mathrm{M} \mathrm{e}$), 3.65 (s, $1 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), 6.5 (s, $1 \mathrm{H}, \mathrm{H}-8$), 6.7-6.9 (m, 1 H, Ar-H), 7.1-7.55 (m, 4 H, Ar-H). m/z (FAB) 254 (100%) (M + 1) ${ }^{+}$, 253 (29), 239 (18), 136 (25), 90 (15), 77 (19).

1,5,7-T rimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3-p-tolylaminide 5 e . Compound $\mathbf{5 e}$ was an orange amorphous solid (52\%), mp $184-185^{\circ} \mathrm{C}$ (Found: C, 67.4; H, 6.4; N, 26.2\%. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5}$ requires: C, 67.3; $\left.\mathrm{H}, 6.5 ; \mathrm{N}, 26.1 \%\right)$. $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $1657,1618,1595,1517,1500 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.25(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{Me}$ or Ar-M e), 2.4 (s, $3 \mathrm{H}, 7-\mathrm{M}$ eor Ar -M e), 3.3 (s, $3 \mathrm{H}, 5-\mathrm{Me}$), 3.65 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), 6.45 (s, $1 \mathrm{H}, \mathrm{H}-8$), 7.05 and 7.35 (dd, $4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}$ system of A rM e); m/z (FA B) 268 (100%) (M + 1) ${ }^{+}$, 267 (30), 243 (17), 132 (18), 43 (19).

1,5,7-T rimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3-pmethoxyphenylaminide 5 . Compound $5 f$ was an orange amorphous solid (40%), mp $165-167^{\circ} \mathrm{C} . v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1655$, 1621, 1532, 1500. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) $2.4(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{Me}$) $3.4(\mathrm{~s}, 3 \mathrm{H}, 2-$ Me), 3.65 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$ or $\mathrm{Ar}-\mathrm{OM}$ e) 3.8 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$ or A rOM e), 6.5 (s, $1 \mathrm{H}, \mathrm{H}-8$), 6.85 and 7.4 (dd, $4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}$ system of ArOMe). m/z (EI) 283.14521 (8%): $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ requires: $283.14521\left(M^{+}\right), 259(100), 244$ (58), 218 (57), 203 (62).

1,5,7-T rimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3-p-nitrophenylaminide 5 g . Compound $\mathbf{5 g}$ was a deep-red amorphous solid (59\%), mp 258-259 ${ }^{\circ} \mathrm{C}$ (Found: C, 56.7; H, 4.8; N, 28.1). $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$. requires $\mathrm{C}, 56.4 ; \mathrm{H}, 4.7 ; \mathrm{N}, 28.2 \%$). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\left.\mathrm{cm}^{-1} 1651,1608,1576,1510 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right] 2.4$ (s, $3 \mathrm{H}, 7-\mathrm{M} \mathrm{e}$), 3.2 (s, $3 \mathrm{H}, 5-\mathrm{Me}$), $3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), 7.6 (s, $1 \mathrm{H}, \mathrm{H}-8$), 7.4 and 8.0 (dd, $4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}$ system of ArNO_{2}). m/z (FAB) 299 (100\%) $(M+1)^{+}, 149(24), 89(17), 81(15), 71$ (17).

1-B enzyl-5,7-dimethyl[1,2,4]triazolo[4,3-c]pyrimidinium-3ethoxycarbonylaminide 5 h . Compound 7 h formed yellow needles (46\%), mp 157-160 ${ }^{\circ} \mathrm{C}$ (Found: C, 62.8; H, 5.6; $\mathrm{N}, 21.2$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $\left.\mathrm{C}, 62.8 ; \mathrm{H}, 5.8 ; \mathrm{N}, 21.5 \%\right)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3056, 2964, 1652 ($\mathrm{C}=0$) , 1594, 1521. m/z (FAB) 326 (100\%) $(M+1)^{+}, 325$ (18), 281 (17), 280 (29), 137 (25), 91 (59). $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.4(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{Me}), 3.25(\mathrm{~s}$, $3 \mathrm{H}, 5-\mathrm{M} \mathrm{e}), 4.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3} 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.75\right.$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.3 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$).

Hydrolysis of [1,2,4]triazolo[4,3-c]pyrimidinium betaines 5d,e with water
 Compound 5d. The orange aminide $\mathbf{5 d}$ ($0.02 \mathrm{~g}, 0.073 \mathrm{mmol}$)

 was stirred as a suspension in water ($5 \mathrm{~cm}^{3}$) for 12 h during which time the mixture became colourless. The precipitate was separated by filtration and dried to give the triazole derivative 8a in quantitative yield (0.17 g), mp $208-210^{\circ} \mathrm{C}$ (Found: C, 61.7; H, 6.2; N, 25.5\%. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5}$ O. requires C, 62.0; H, 6.3; $\mathrm{N}, 25.8 \%) . v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3414(\mathrm{~N}-\mathrm{H}), 3278(\mathrm{~N}-\mathrm{H}), 3154$, $1691(\mathrm{C}=0), 1650,1601,1572,1474,1266 . \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.1$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), $2.35[\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHC}(\mathrm{Me})=], 3.7(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me})$, $5.5[(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{C}(\mathrm{M} \mathrm{e})], 6.7-7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.05(\mathrm{~s}, 1 \mathrm{H}$, NH), 11.4 (s, 1 H, NH). m/z (FAB) $272(88 \%)(M+1)^{+}, 271$ (100), 230 (47), 229 (27).Triazole derivative $\mathbf{8 b}$. Compound $\mathbf{8 b}$ was prepared in similar fashion (27\%), mp 127-129 ${ }^{\circ} \mathrm{C}$ (Found: C, 62.9; H, 6.9; N, 24.3. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 63.1 ; \mathrm{H}, 6.7 ; \mathrm{N}, 24.5 \%$). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3290 (NH), 1690 ($\mathrm{C}=0$) , 1650, 1610, 1560, 1530. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.1$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$ or $\mathrm{Ar}-\mathrm{Me}$), 2.2 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$ or ArMe), 2.4 [d, $3 \mathrm{H}, \mathrm{NHC}(\mathrm{M} \mathrm{e})=], 3.6(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$), $5.0[\mathrm{~s}, 1 \mathrm{H}$, $-\mathrm{CH}=\mathrm{C}(\mathrm{Me})], 6.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.0$ and $7.3\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system of Ar-Me), 11.35 (br s, 1 H , NH). m/z (FAB) 286 (100%) $(M+1)^{+}, 285(88), 244(46), 243(24), 43$ (17).

G eneral procedure for the hydrolysis of [1,2,4]triazolo[4,3-c] pyrimidinium-3-aminides $5 \mathrm{a}, \mathrm{d}, \mathrm{g}$ with aqueous hydrochloric acid

The appropriate aminide (0.10 g ,) was suspended in water (5 cm^{3}). Addition of several drops of 5 mHCl (aq.) caused immediate hydrolysis. The product was collected by filtration to afford, for example, the triazole derivative $8 \mathrm{a}(0.83 \mathrm{~g}, 78 \%$) mp 215$217^{\circ} \mathrm{C}$ (see above). The following compounds were also prepared.

Triazole derivative $8 \mathbf{e}$. Compound $\mathbf{8 e}(0.10 \mathrm{~g}, 93 \%$) had mp $232-234{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3236(\mathrm{~N}-\mathrm{H}), 1750(\mathrm{C}=0), 1695$ ($\mathrm{C}=0$) , 1650, $1600 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.3\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7,-\mathrm{OCH}_{2}\left(\mathrm{CH}_{3}\right)\right]$, $2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.4[\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 1, \mathrm{NHC}(\mathrm{M} \mathrm{e})=], 3.7(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{NM} \mathrm{e}), 4.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.1[\mathrm{~s}, 1 \mathrm{H}, \mathrm{J} 1$, $-\mathrm{CH}=\mathrm{C}(\mathrm{Me})], 7.3(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 11.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}) . \mathrm{m} / \mathrm{z}$ (EI) $267.13050 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires $267.13314\left(\mathrm{M}^{\cdot+}\right)$.

Triazole derivative 8f. Compound $8 \mathrm{f}(0.048 \mathrm{~g}, 44 \%$) had mp $244-246{ }^{\circ} \mathrm{C}$ (Found: C, 52.9; H, 5.0; N, 26.3. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3}$ requires $\mathrm{C}, 53.2 ; \mathrm{H}, 5.1 ; \mathrm{N}, 26.6 \%)$. $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3279(\mathrm{~N}-\mathrm{H})$, $3131(\mathrm{~N}-\mathrm{H}), 1692(\mathrm{C}=0), 1651,1603 . \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.2(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 3.3[\mathrm{~s}, 3 \mathrm{H}, \mathrm{J} 1, \mathrm{NHC}(\mathrm{Me})=], 3.8(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{M} \mathrm{e}), 5.6[\mathrm{~s}$, $1 \mathrm{H}, \mathrm{J} 1,-\mathrm{CH}=\mathrm{C}(\mathrm{Me})], 7.7$ and $8.2\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system of ArN O_{2}), 10.1 (brs, $\left.1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 11.2(\mathrm{brs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}) . \mathrm{m} / \mathrm{z}(\mathrm{FAB})$ 317 (100%) ($M+1)^{+}, 316(76), 189$ (66), 39 (49).

Reaction of [1,2,4]triazolo[4,3-c]pyrimidinium-3-phenylaminide

 5 d with alcoholsThe aminide $5 \mathrm{~d}(0.10 \mathrm{~g}, 0.395 \mathrm{mmol})$ was stirred in methanol ($10 \mathrm{~cm}^{3}$) for 45 min during which time the compound dissolved and the solution became colourless. The excess reagent/solvent was evaporated under reduced pressure, and the residual solid was triturated with light petroleum ($10 \mathrm{~cm}^{3}$) to provide the colourless triazole derivative $8 \mathrm{c}(0.078 \mathrm{~g}, 71 \%), \mathrm{mp} 128-129^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.0 ; \mathrm{H}, 6.7 ; \mathrm{N}, 24.2 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 63.1$; $\mathrm{H}, 6.7 ; \mathrm{N}, 24.5 \%) . v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3275$ (N H), 1676, 1603, 1566, 1547, 1505, 1453, 1279. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.85\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{OM} \mathrm{e)}\right.$], $2.0\left[\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 1, \mathrm{NC}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right], 3.7(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$ or OMe), 3.75 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{M}$ e or OM e), 5.45 [d, $1 \mathrm{H}, \mathrm{J} 1, \mathrm{CH}=\mathrm{C}(\mathrm{Me})$], 6.5
(s, $1 \mathrm{H}, \mathrm{NH}$) , 6.8-7.45 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). m/z (FAB) 286 (100%) $(\mathrm{M}+1)^{+}, 285$ (87), 270 (32), 254 (60).

The amide 5d ($0.1 \mathrm{~g}, 0.395$) was treated with ethanol using the procedure described above to give the triazole derivative $\mathbf{8 d}$ ($0.094 \mathrm{~g}, 80 \%$), mp $95-97^{\circ} \mathrm{C}$ (Found: C, 43.9; H, 7.0; N, 23.1. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$ requires $\left.\mathrm{C}, 64.2 ; \mathrm{H}, 7.0 ; \mathrm{N}, 23.4 \%\right)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3276 (NH), 1676, 1603, 1565, 1547, 1500, 1270. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.3$ ($\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $1.8\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}{ }_{3} \mathrm{C}(\mathrm{OEt})\right], 2.0[\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}<1$, $\left.\mathrm{NC}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right], 3.7(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 4.2\left(\mathrm{q}, \mathrm{J} 7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $5.45[\mathrm{q}, 1 \mathrm{H}, \mathrm{J}<1, \mathrm{CH}=\mathrm{C}(\mathrm{Me})], 7.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.8-7.5(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$. m/z (FAB) $300(35 \%)(\mathrm{M}+1)^{+}, 77(100), 74(83)$.

Preparation of 1-methyl-1-(2,5-dimethylpyrazin-6-yl)hydrazine

 12b3-Chloro-2,5-dimethylpyrazine ($15.0 \mathrm{~g}, 100 \mathrm{mmol}$), potassium carbonate ($31.05 \mathrm{~g}, 250 \mathrm{mmol}$), methylhydrazine ($33.75 \mathrm{~g}, 750$ mmol) and butanol ($150 \mathrm{~cm}^{3}$) were heated under reflux for 4 h . The product was cooled and filtered, and the solvent was evaporated by distillation at atmospheric pressure The residual orange oil solidified on cooling and was digested in diethyl ether. The mixture was filtered and the filtrate was evaporated under reduced pressure. The solid was dissolved in a mixture (1:1) of ethyl acetate and dichloromethane and eluted through a short column of silica gel to afford the title compound as a colourless solid ($7.76 \mathrm{~g}, 51 \%$) $\mathrm{mp} 46-48^{\circ} \mathrm{C}$ (Found: C, 55.5; H, 7.6; $\mathrm{N}, 36.5 . \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{4}$ requires $\mathrm{C}, 55.3 ; \mathrm{H}, 7.9 ; \mathrm{N}, 36.8 \%$). $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 3280(\mathrm{NH}), 1634,1534 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 2.4 (s, $3 \mathrm{H}, \mathrm{CM}$ e), 2.5 (s, $3 \mathrm{H}, \mathrm{CM} \mathrm{e}$), 3.0 (s, $3 \mathrm{H}, \mathrm{NMe}$), 4.10 (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), 7.9 (s, $1 \mathrm{H}, \mathrm{H}-3$). m/z (FAB) $153(100 \%)(\mathrm{M}+1)^{+}$, 152 (77), 151 (18).

Preparation of 6-benzylidenehydrazino-2,5-dimethylpyrazine

 12d2,4-Dimethyl-6-hydrazinopyrazine 12a ($4 \mathrm{~g}, 29 \mathrm{mmol}$) was treated with benzaldehyde ($4.6 \mathrm{~g}, 44 \mathrm{mmol}$) in ethanol $\left(50 \mathrm{~cm}^{3}\right)$. The solution was heated under reflux for 2.5 h then poured into water ($500 \mathrm{~cm}^{3}$) and the precipitate was separated by filtration. The product was recrystallised from light petroleum (bp 60$80^{\circ} \mathrm{C}$) to give the title compound as colourless crystals (3.8 g , 58%), mp $157-159^{\circ} \mathrm{C}$ (Found: C, 69.0; H, 6.2; N, 25.0. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4}$ requires C, 69.0; $\left.\mathrm{H}, 6.2 ; \mathrm{N}, 24.7 \%\right)$. $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3222(\mathrm{~N}-\mathrm{H}), 3056,1604,1587,1542 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.45(\mathrm{~s}, 3 \mathrm{H}$, CM e), 2.65 (s, 3 H, CM e), 7.35 (m, 3 H, Ar-H), 7.65 (m, 2 H, Ar-H), 7.85 (s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ or $\mathrm{N}=\mathrm{CH}$). 7.9 (s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ or $\mathrm{N}=\mathrm{CH}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 227(100 \%)(\mathrm{M}+1)^{+}, 226(22), 123(49)$.

Preparation of N -benzyl-N-(2,5-dimethylpyrazin-6-yl)benzaldehyde hydrazone 12 e

6-Benzylidenehydrazino-2,5-dimethylpyrazine 12d (1.0 g, 4.4 mmol) in THF ($25 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of sodium hydride ($0.106 \mathrm{~g}, 4.4 \mathrm{mmol}$) in TH F ($25 \mathrm{~cm}^{3}$) for 15 min . Benzyl bromide ($0.75 \mathrm{~g}, 4.4 \mathrm{mmol}$) was then added and the mixture heated under reflux for 2 h . A fter cooling to room temp., the mixture was filtered and the filtrate evaporated under reduced pressure. The brown residue was chromatographed on silica using light petroleum (bp $60-80^{\circ} \mathrm{C}$)-ethyl acetate $(80: 20)$ as eluent, to afford the title product as yellow crystals ($0.92 \mathrm{~g}, 66 \%$), mp 107-109 ${ }^{\circ} \mathrm{C}$ (Found: C, 76.2; H, 6.4; $\mathrm{N}, 17.7 \% . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4}$ requires $\mathrm{C}, 76.9 ; \mathrm{H}, 6.4 ; \mathrm{N}, 17.7 \%$). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1591,1563,1530,1418,1144 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.35$ (s, $3 \mathrm{H}, \mathrm{CM} \mathrm{e}), 2.9$ (s, $3 \mathrm{H},(\mathrm{CM} \mathrm{e}), 5.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.1-7.4$ (m, 8H,Ar-H), 7.45 (s, $1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$) , 7.45-7.55 (m, 2 H , Ar-H), 7.95 (s, 1 H , H-3). m/z (FAB) 317 (45%) (M +1) ${ }^{+}, 225$ (30), 119 (54), 100 (78), 91 (100).

Preparation of 1-benzyl-1-(2,5-dimethylpyrazin-6-yl)hydrazine

 12cA solution of N -benzyl- N -(2,5-dimethylpyrazin- 6 - y) benzaldehyde hydrazone $12 \mathrm{e}(2.5 \mathrm{~g}, 8.0 \mathrm{mmol}$) in 2 m aqueous hydrochloric acid $\left(50 \mathrm{~cm}^{3}\right)$ was heated under reflux for 1 h .

Benzaldehyde was removed from the mixture by co-distillation with water. The solution was cooled to room temp., basified with 2 м aqueous sodium hydroxide, and then extracted with dichloromethane ($2 \times 25 \mathrm{~cm}^{3}$). Evaporation of the organic extract gave the title compound as a yellow oil ($1.1 \mathrm{~g}, 57 \%$). N o attempt was made to purify the compound to analytical standard and it was used for further transformations. $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3328 (NH), 3188 (NH), 3029, 2923, 2849, 1606, 1570, 1533, 1495. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.4(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CM} \mathrm{e}), 2.6$ (s, $3 \mathrm{H}, \mathrm{CM} \mathrm{e}$), 3.75 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$) , 7.2-7.4 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3$). m/z (EI) 228.13733 (20\%). $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4}$ requires $228.13750\left(\mathrm{M}^{+}\right), 137$ (100), 91 (74).

G eneral procedure for the preparation of 1-substituted-1-(2,5-dimethylpyrazin-6-yl)thiosemicarbazides $12 \mathrm{f}-\mathrm{j}$

The hydrazine derivative ($\mathbf{1 2 b}$ or $\mathbf{1 2 c}$) (1 equiv.) and the appropriate isothiocyanate derivative (1 equiv.) were stirred in diethyl ether for 24 h at room temp. The resulting precipitate was collected by filtration and recrystallised from light petroleum (bp $60-80^{\circ} \mathrm{C}$)-toluene ($1: 1$). The following compounds were prepared.

1-M ethyl-1-(2,5-dimethylpyrazin-6-yl)-4-phenylthiosemi-

carbazide 12f. C ompound 12 f formed colourless crystals (69\%), $\mathrm{mp} 148-150^{\circ} \mathrm{C}$ (Found: C, 58.3; H, 6.0; N, 24.1; S, 10.7. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 58.6 ; \mathrm{H}, 5.9 ; \mathrm{N}, 24.4 ; \mathrm{S}, 11.1 \%$). $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3243$ (NH), 3136 (NH), 1593, 1526, 1446. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CM} \mathrm{e}), 2.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CM} \mathrm{e}), 3.10(\mathrm{~s}, 3 \mathrm{H}$, N M e), 7.18-7.67 (m, 5H, Ar-H), 7.95 (br s, 1 H, NH), 8.15 (s, 1 H, H-3), 8.95 (br s, $1 \mathrm{H}, \mathrm{NH}$). m/z (FAB) $288(87 \%)(\mathrm{M}+1)^{+}$, 254 (100), 147 (29), 109 (28).
1-M ethyl-1-(2,5-dimethylpyrazin-6-yl)-4-ethoxycarbonylthiosemicarbazide 12 g . Compound $\mathbf{1 2 g}$ was orange (86%), $\mathrm{mp} 122-$ $124^{\circ} \mathrm{C}$ (Found: C, 46.9; H,5.8; $\mathrm{N}, 24.6 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ requires C, 46.7; H, 6.0; N, 24.7\%). $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3164\right.$ (N H), 3013 (NH), $1708(\mathrm{C}=0), 1539,1447 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 8$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.45 (s, $3 \mathrm{H}, 2$ - or $5-\mathrm{Me}$), $2.50(\mathrm{~s}, 3 \mathrm{H}, 2$ - or $5-$ Me), 3.25 (s, $3 \mathrm{H}, \mathrm{NM}$ e), $4.25\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 8, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 7.95 (br s, $1 \mathrm{H}, \mathrm{NH}$), $8.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3$), 11.4 (br s, $1 \mathrm{H}, \mathrm{NH}$). m/z (FAB), 284 (100%) ($\mathrm{M}+1)^{+}, 250(76), 238$ (22).

1-M ethyl-1-(2,5-dimethylpyrazin-6-yl)-4-p-methox yphenyl-

 thiosemicarbazide $\mathbf{1 2} \mathbf{h}$. Compound $\mathbf{1 2 h}$ was colourless (68\%), $\mathrm{mp} 162-164{ }^{\circ} \mathrm{C}$ (Found: C, 56.8; H, 6.0; N, 22.1. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires C, 56.8; H, 6.0; N, 22.1\%). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3329$ (NH), 3123 (NH), 2963, 1533, 1449. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.50$ (s, $3 \mathrm{H}, 2$ - or 5M e), 2.60 ($\mathrm{s}, 3 \mathrm{H}, 2$ - or $5-\mathrm{Me}$), 3.10 (s, $3 \mathrm{H}, \mathrm{NM}$ e), 3.80 (s, 3 H , $\mathrm{OM} \mathrm{e}), 6.9$ and 7.45 (dd, $4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}$ system of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e), 7.8 (br s, $1 \mathrm{H}, \mathrm{NH}$), $8.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 8.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) . \mathrm{m} / \mathrm{z}$ (FAB) 318 (100%) ($\mathrm{M}+1)^{+}, 317$ (25), 285 (20), 284 (78), 177 (53).1-M ethyl-1-(2,5-dimethylpyrazin-6-yl)-4-p-tolythiosemi-
carbazide 12i. Compound 12i was colourless (79\%), mp 158$160^{\circ} \mathrm{C}$ (Found: C, 59.5; $\mathrm{H}, 6.5 ; \mathrm{N}, 23.2 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{~S}$ requires C , 59.8; H , 6.3; N , 23.3\%). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3268$ (N H), 3146 (NH), 2978, 1527, 1449; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{M} \mathrm{e}\right.$), $2.50(\mathrm{~s}, 3 \mathrm{H}$, 2- or 5-M e), 2.60 (s, $3 \mathrm{H}, 2$ - or $5-\mathrm{M} \mathrm{e}$), 3.10 (s, $3 \mathrm{H}, \mathrm{NM}$ e), 7.20 and $7.45\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system of $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{M} \mathrm{e}\right), 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH), 8.15 (s, $1 \mathrm{H}, \mathrm{H}-3$), 8.9 (br s, $1 \mathrm{H}, \mathrm{NH}$). m/z (FAB) 302 $(M+1)^{+}$.

1-Benzyl-1-(2,5-dimethylpyrazin-6-yl)-4-phenylthiosemi-

carbazide 12j. Compound 12j formed colourless crystals (70\%), mp 145-148 ${ }^{\circ} \mathrm{C}$ (Found: C, 65.9; H, 5.8; $\mathrm{N}, 19.2 . \mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{~S}$ requires C, 66.1; H, 5.8 ; N, 19.3\%). $v_{\text {max }} / \mathrm{cm}^{-1} 3312$ (N H), 3118 (N H) , 2968, 1595, 1543, 1504, 1446, 1265, 1167; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) 2.55 (s, $3 \mathrm{H}, \mathrm{Me}$), $2.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}\right.$), 4.25-4.65 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.15$7.50(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3)$, 8.65 (br s, $1 \mathrm{H}, \mathrm{NH}$).

General method for the preparation of 1,2,4-triazolo[4,3-a] pyrazinium-3-aminides 6a-e

The appropriate thiosemicarbazide ($\mathbf{1 2 f - j}$) (1 equiv.) was
treated with dicyclohexylcarbodiimide (1.5 equiv.) in acetone for 2 d at room temp. The resultant precipitate was collected by filtration and washed with diethyl ether. The following compounds were prepared.

1,5,8-T rimethyl-1,2,4-triazolo[4,3-a]pyrazinium-3-phenyI-

aminide 6a. Compound 6 a was a dark-red amorphous solid (75\%), mp 204-207 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 66.1; H, 6.0; N, 27.4. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5}$ requires $\mathrm{C}, 66.4 ; \mathrm{H}, 5.9 ; \mathrm{N}, 27.7 \%$). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1614,1575,1504 . \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.75$ (s, $3 \mathrm{H}, 8-\mathrm{M} \mathrm{e}$), 3.05 (s, $3 \mathrm{H}, 5-\mathrm{Me}$), $4.1(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{M} \mathrm{e}$), $6.6(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.1(\mathrm{~m}, 2$ H, Ar-H), 7.4 (m, 3H,Ar-H).m/z (FAB) 254 (100%) (M + 1) ${ }^{+}$, 253 (89).
1,5,8-T rimethyl-1,2,4-triazolo[4,3-a]pyrazinium-3-ethoxy-
carbonylaminide $\mathbf{6 b}$. Compound $\mathbf{6 b}$ was yellow and fluorescent (63\%), mp 212-213 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 53.0; H, 6.1; N, 27.8. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, 53.0; $\left.\mathrm{H}, 6.0 ; \mathrm{N}, 28.1 \%\right)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1637(\mathrm{C}=0) 1579,1503 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.3(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.91(\mathrm{~m}, 3 \mathrm{H}, \mathrm{J}<0.7,8-\mathrm{Me}), 3.10(\mathrm{~m}, 3 \mathrm{H}$, J < 0.9, $5-\mathrm{Me}$), $3.47\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $4.3(\mathrm{~s}, 3 \mathrm{H}$, NM e), 7.52 (m, 1 H J <0.9, H-6). m/z (FAB) 250 (100\%) $(M+1)^{+}, 204$ (63).

1,5,8-T rimethyl-1,2,4-triazolo[4,3-a]pyrazinium-3-pmethoxyphenylaminide $\mathbf{6 c}$. Compound $\mathbf{6 c}$ was a dark-red amorphous solid (78%), mp $198-200^{\circ} \mathrm{C}$ (decomp.) (Found: C, 63.5; $\mathrm{H}, 6.0 ; \mathrm{N}, 24.6 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 63.0 ; \mathrm{H}, 6.0 ; \mathrm{N}$, $24.7 \%)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1612,1584,1511 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.74$ (m, 3 $\mathrm{H}, \mathrm{J}<0.8,8-\mathrm{Me}$), 3.11 (m, $3 \mathrm{H}, \mathrm{J}<0.9,5-\mathrm{Me}$), 3.75 (s, 3 H , N M e), 4.10 (s, $3 \mathrm{H}, \mathrm{OM}$ e), 7.20 (m, $1 \mathrm{H}, \mathrm{J}$ ca. 0.9, H-6), $7.35-$ $7.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e). m/z (FAB) 284 (100%) $(M+1)^{+}, 283$ (62), 119 (24), 100 (48).
1,5,8-T rimethyl-1,2,4-triazolo[4,3-a]pyrazinium-3-p-tolyl-
aminide $\mathbf{6 d}$. Compound $\mathbf{6 d}$ was a brown crystalline solid (91%), $\mathrm{mp} 208-210^{\circ} \mathrm{C}$ (decomp.) (Found: C, 67.1; H, 6.1; N, 25.9. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5}$ requires C, 67.4; $\left.\mathrm{H}, 6.4 ; \mathrm{N}, 26.2 \%\right)$. $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 1616, 1588, 1502. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{M} \mathrm{e}\right), 2.77(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{J}<0.8,8-\mathrm{Me}$), $3.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{J}<0.9,5-\mathrm{Me}$), 4.1 (s, 3 H , N M e), 7.23 (m, 1 H, J < $1, \mathrm{H}-6$), 7.0-7.4 (m, $4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}$ system of $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{M} \mathrm{e}\right) . \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 268(100 \%)(\mathrm{M}+1)^{+}, 267(48), 100$ (25).

1-Benzyl-5,8-dimethyl-1,2,4-triazolo[4,3-a]pyrazinium-3-
phenylaminide 6 e . Compound $\mathbf{6 e}$ was a red amorphous solid (55\%), mp 209-210 ${ }^{\circ} \mathrm{C}$ (decomp.). $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1620,1575$, 1503,$1344 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.7(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{M} \mathrm{e}), 3.2(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{M} \mathrm{e}$), 5.6 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.75-6.85 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.2-7.4 (m, $8 \mathrm{H}, \mathrm{Ar}-$ H), 7.5-7.6 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) . \mathrm{m} / \mathrm{z}$ (EI) 329.16555 (9%). $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5}$ requires $329.16405\left(\mathrm{M}^{+}\right)$, $240(30)$, 239 (36), 98 (39), 91 (100), 86 (38), 84 (59).

Preparation of the hydrochloride salt 13 of $1,5,8$-trimethyl-[1,2,4]-triazolo[4,3-a[pyrazinium-3-phenylaminide 6a

Gaseous hydrogen chloride was bubbled through a suspension of 1,5,8-trimethyl-[1,2,4]-triazolo[4,3-a]pyrazinium-3-phenylaminide $6 \mathrm{a}(0.80 \mathrm{~g}) 3.16 \mathrm{mmol})$ in chloroform ($10 \mathrm{~cm}^{3}$) for 5 min . The precipitate changed from red to yellow. The solid was collected by filtration and washed with chloroform to afford the salt 13 as a yellow solid ($0.60 \mathrm{~g}, 66 \%$), mp $150^{\circ} \mathrm{C}$ (decomp.). $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.95$ (s, $3 \mathrm{H}, 8-\mathrm{Me}$), 3.05 (s, $3 \mathrm{H}, 5-\mathrm{M} \mathrm{e}$), 4.45 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{M}$ e), 7.05 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.3 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.05 (s, 1 H, H-6); this salt was insufficiently stable to obtain satisfactory data from elemental analysis.

Acknowledgements

We thank the SERC for a CA SE Award (to D. L. C.).

References

1 H. M arley, P. N. Preston and S. H. B. Wright, J. Chem. Soc., Perkin Trans. 1, 1989, 1727.
2 B. C. Bishop, H. M arley, K. J. McCullough, P. N. Preston and S. H. B. Wright, J. C hem. Soc., Perkin Trans. 1, 1993, 705.

3 R. D ohmori, Y. N akai, R. Yoshumura and T. N ato, Chem. Pharm. Bull., 1969, 17, 1479.
4 G. W. M iller and F. L. Rose, J. Chem. Soc., 1963, 5642.
5 H. M arley, K. J. M cCullough, P. N. Preston and S. H. B. Wright, J. C hem. Soc., Perkin Trans. 1, 1988, 351.

6 D. J. Brown and T. N agamatsu, A ust. J. Chem., 1978, 31, 2505.
7 J. Barluenga and M. Tomas, A dv. H eterocycl. C hem., 1993, 57, 1.
8 K . T. Potts and S. W. Schneller, J. Org. C hem., 1968, 5, 485.
9 H. S. EI K hadem, J. K awai and D. L. Swartz, H eterocycles, 1989, 28, 239.

10 J. J. P Stewart, J. C omp Chem., 1989, 10, 209.
11 M OPAC 93 (J. J. P. Stewart and Fujitsu Limited, copyright F ujitsu Limited, Tokyo, Japan) obtainable from QCPE, Department of Chemistry, Indiania University, Bloomington, Indiana 47405, USA.
12 A K lamt and G. Schuurmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799.

13 G. M. Loudon, Organic Chemistry, Third Edition, Benjamin/ Cummings, Inc., Redwood City, California, 1995, p. 354.
14 M . F. Guest and P. Sherwood, GAMESS, an ab initio program, The D aresbury L aboratory, Warrington, UK .

15 See e.g. W. J. Hehre, L. R adom, P. v R. Schleyer and J. A. Pople, A b Initio M olecular Orbital Theory, Wiley, N ew York, 1986, pp. 360370.

16 Cambridge Structural D atabase, Cambridge Crystallographic D ata Centre, University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 2EW.
17 J. R. Cannon, C. L. R alston and A. H. White, A ust. J. C hem., 1980, 33, 2237.
18 H. B. Broughton, S. M . G reen and H. S. R zepa, J. Chem. Soc., Perkin Trans. 2, 1995, 41; I. Juranic, H. S. R zepa and M. Y i, J. Chem. Soc., Perkin Trans. 2, 1990, 877.
19 F. L. Warren, J. Chem. Soc., 1938, 1100.
20 P. Béranger, M.Phil. Thesis, Heriot-Watt University, Edinburgh, U K, 1994.

Paper 6/04501D
Received 27th J une 1996 A ccepted 2nd September 1996

